MOSFET – Power, Single, P-Channel with ESD Protection, SOT-723 # -20 V, -780 mA ### **Features** - P-channel Switch with Low R_{DS(on)} - 44% Smaller Footprint and 38% Thinner than SC-89 - Low Threshold Levels Allowing 1.5 V R_{DS(on)} Rating - Operated at Low Logic Level Gate Drive - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant ## **Applications** - Load/Power Switching - Interfacing, Logic Switching - Battery Management for Ultra Small Portable Electronics ## MAXIMUM RATINGS (T_J = 25°C unless otherwise stated) | Parameter | | Symbol | Value | Unit | | |---|------------------------|-----------------------------------|-----------------|------|----| | Drain-to-Source Voltage | | V_{DSS} | -20 | V | | | Gate-to-Source Volt | Gate-to-Source Voltage | | V_{GS} | ± 6 | V | | Continuous Drain | Steady
State | T _A = 25°C | I _D | -780 | mA | | Current (Note 1) | State | T _A = 85°C | | -570 | | | | t ≤ 5 s | T _A = 25°C | | -870 | | | Power Dissipation (Note 1) | Steady
State | T _A = 25°C | P _D | 450 | mW | | | t ≤ 5 s | | | 550 | | | Continuous Drain | Steady | T _A = 25°C | I _D | -660 | mA | | Current (Note 2) | State | T _A = 85°C | | -480 | | | Power Dissipation (Note 2) | | T _A = 25°C | P _D | 310 | mW | | Pulsed Drain Cur-
rent | t _p = 10 μs | | I _{DM} | -1.2 | Α | | Operating Junction and Storage Temperature | | T _J , T _{STG} | –55 to
150 | °C | | | Lead Temperature for Soldering Purposes (1/8" from case for 10 s) | | TL | 260 | °C | | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces) - 2. Surface mounted on FR4 board using the minimum recommended pad size ## ON Semiconductor® #### www.onsemi.com | V _{(BR)DSS} | R _{DS(on)} TYP | I _D Max | |----------------------|-------------------------|--------------------| | -20 V | 0.38 Ω @ -4.5 V | –780 mA | | | 0.52 Ω @ -2.5 V | -660 mA | | | 0.70 Ω @ -1.8 V | –100 mA | | | 0.95 Ω @ -1.5 V | –100 mA | ## SOT-723 (3-LEAD) - 1 Gate - 2 Source - 3 Drain SOT-723 CASE 631AA STYLE 5 ## **MARKING DIAGRAM** KD = Specific Device Code M = Date Code ## **ORDERING INFORMATION** | Device | Package | Shipping [†] | |-------------|---------|-----------------------| | NTK3139PT1G | | 4000 / Tape & Reel | | NTK3139PT1H | SOT-723 | 4000 / Tape & Neer | | NTK3139PT5G | Pb-Free | 8000 / Tape & Reel | | NTK3139PT5H | | outo / Tape & Neer | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. ## THERMAL RESISTANCE RATINGS | Parameter | Symbol | Max | Unit | |---|---------------|-----|------| | Junction-to-Ambient - Steady State (Note 3) | $R_{ hetaJA}$ | 280 | °C/W | | Junction-to-Ambient - t = 5 s (Note 3) | $R_{ hetaJA}$ | 228 | | | Junction-to-Ambient - Steady State Minimum Pad (Note 4) | $R_{ hetaJA}$ | 400 | | - 3. Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces) 4. Surface mounted on FR4 board using the minimum recommended pad size # $\textbf{MOSFET ELECTRICAL CHARACTERISTICS} \ (T_J = 25^{\circ}C \ unless \ otherwise \ specified)$ | Parameter | Symbol | Test Condition | | Min | Тур | Max | Unit | |--|--------------------------------------|--|------------------------|-------|-------|------|----------| | OFF CHARACTERISTICS | | | | | ,, | | <u> </u> | | Drain-to-Source Breakdown
Voltage | V _{(BR)DSS} | V_{GS} = 0 V, I_D = -250 μA | | -20 | | | V | | Drain-to-Source Breakdown
Voltage Temperature Coefficient | V _{(BR)DSS} /T _J | I _D = -250 μA, Reference to 25°C | | | -16.5 | | mV/°C | | Zero Gate Voltage Drain Current | I _{DSS} | V _{GS} = 0 V, | T _J = 25°C | | | -1.0 | | | | | $V_{DS} = -16V$ | T _J = 125°C | | | -2.0 | μΑ | | Gate-to-Source Leakage Current | I _{GSS} | V _{DS} = 0 V, V _{GS} = : | ±4.5 V | | | ±2.0 | μΑ | | ON CHARACTERISTICS (Note 5) | • | | | | | • | | | Gate Threshold Voltage | V _{GS(TH)} | $V_{GS} = V_{DS}, I_D = -$ | 250 μΑ | -0.45 | | -1.2 | V | | Negative Threshold Temperature Coefficient | V _{GS(TH)} /T _J | | | | 2.4 | | mV/°C | | Drain-to-Source On Resistance | | $V_{GS} = -4.5 \text{ V}, I_D = -780 \text{ mA}$ | | | 0.38 | 0.48 | | | | | $V_{GS} = -2.5 \text{ V}, I_D = -660 \text{ mA}$ | | | 0.52 | 0.67 | | | | R _{DS(on)} | $V_{GS} = -1.8 \text{ V}, I_D = -100 \text{ mA}$ | | | 0.70 | 0.95 | Ω | | | | $V_{GS} = -1.5 \text{ V}, I_D = -100 \text{ mA}$ | | | 0.95 | 2.20 | | | Forward Transconductance | 9FS | $V_{DS} = -10 \text{ V}, I_{D} = -540 \text{ mA}$ | | | 1.2 | | S | | Gate Resistance | R_{G} | T _A = 25°C | | | 112 | | Ω | | CHARGES, CAPACITANCES AND (| GATE RESISTAN | NCE | | | | • | • | | Input Capacitance | C _{ISS} | | | | 113 | 170 | | | Output Capacitance | Coss | $V_{GS} = 0 \text{ V, f} = 1 \text{ MHz, V}_{DS} = -16 \text{ V}$ | | | 15 | 25 | pF | | Reverse Transfer Capacitance | C _{RSS} | | | | 9.0 | 15 | | | SWITCHING CHARACTERISTICS, V | / _{GS} = 4.5 V (Not | e 6) | | | | | | | Turn On Delay Time | t _{d(ON)} | V_{GS} = -4.5 V, V_{DS} = -10 V, I_D = -200 mA, R_G = 10 Ω | | | 9.0 | | | | Rise Time | t _r | | | | 5.8 | | ns | | TurnOff Delay Time | t _{d(OFF)} | | | | 32.7 | | | | Fall Time | t _f | | | | 20.3 | | | | DRAIN SOURCE DIODE CHARACT | ERISTICS | | | | | | | | Forward Diode Voltage | V_{SD} | $V_{GS} = 0 \text{ V}, I_{S} = -350 \text{ mA}$ | T _J = 25°C | | -0.8 | -1.2 | V | | Reverse Recovery Time | t _{RR} | $V_{GS} = 0 \text{ V}, d_{ISD}/d_t = 100 \text{ A/}\mu\text{s}, \\ I_S = -1.0 \text{ A}, V_{DD} = -20 \text{ V}$ | | | 13.2 | | ns | | Charge Time | t _a | | | | 11.8 | | 1 | | Discharge Time | t _b | | | | 1.4 | | 1 | | Reverse Recovery Charge | Q_{RR} | | | | 5.0 | | nC | - 5. Pulse Test: pulse width = 300 μ s, duty cycle = 2% 6. Switching characteristics are independent of operating junction temperatures ## **TYPICAL CHARACTERISTICS** Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics Figure 3. On-Resistance vs. Gate-to-Source Voltage Figure 4. On-Resistance vs. Drain Current and Gate Voltage Figure 5. On–Resistance Variation with Temperature Figure 6. Drain-to-Source Leakage Current vs. Voltage ## **TYPICAL CHARACTERISTICS** Figure 7. Capacitance Variation Figure 8. Resistive Switching Time Variation vs. Gate Resistance Figure 9. Diode Forward Voltage vs. Current ### PACKAGE DIMENSIONS ## SOT-723 CASE 631AA ISSUE D #### NOTES - DIMENSIONING AND TOLERANCING PER ASME - Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. - MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. - DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. | | MILLIMETERS | | | | |-----|-------------|------|------|--| | DIM | MIN | NOM | MAX | | | Α | 0.45 | 0.50 | 0.55 | | | b | 0.15 | 0.21 | 0.27 | | | b1 | 0.25 | 0.31 | 0.37 | | | С | 0.07 | 0.12 | 0.17 | | | D | 1.15 | 1.20 | 1.25 | | | Е | 0.75 | 0.80 | 0.85 | | | Ф | 0.40 BSC | | | | | ΗE | 1.15 | 1.20 | 1.25 | | | L | 0.29 REF | | | | | L2 | 0.15 | 0.20 | 0.25 | | STYLE 5: PIN 1. GATE 2. SOURCE 3. DRAIN ## **RECOMMENDED SOLDERING FOOTPRINT*** **DIMENSIONS: MILLIMETERS** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ## **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative